
Journal of  Statistical Physics, Vol. 57. Nos. 1/2, 1989 

Logical Reformulation of Quantum Mechanics. 
IV. Projectors in Semiclassical Physics 
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This is a technical paper providing the proofs of three useful theorems playing 
a central role in two kinds of physical applications: an explicit logical and 
mathematical formulation of the interpretation of quantum mechanics and the 
corresponding description of irreversibility. The Appendix contains a brief 
mathematical introduction to microlocal analysis. Three theorems are derived in 
the text: (A) Associating a projector in Hilbert space with a macroscopic regular 
cell in classical phase space. (B) Specifying the algebra of the projectors 
associated with different cells. (C) Showing the connection between the classical 
motion of cells and the Schr6dinger evolution of projectors for a class of regular 
Hamiltonians corresponding approximately to deterministic systems as 
described within the framework of quantum mechanics. Applications to the 
interpretation of quantum mechanics are given and the consequences for irrever- 
sibility will be given later. 
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1. I N T R O D U C T I O N  

This paper  belongs to a series devoted to a consistent  logical in terpre ta t ion  
of q u a n t u m  mechanics, a) It con ta ins  the proof  of three theorems which 
allow one to derive the main  features of classical physics, s tart ing from con- 
sistent q u a n t u m  representat ions of logic as described in I. Here classical 

logic enters together with classical dynamics  in the definit ion of classical 

physics. 

The relat ion between q u a n t u m  dynamics  and  classical dynamics  is an 
old subject. (2'3) Its bes t -known formula t ion  is given by Ehrenfest 's 
theorem, ~4) which is, however, somewhat  misleading since it results in 
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classical equations of motion involving an average force and not the exact 
classical force at the average position. Decisive progress was made by 
Hepp, I5~ who was able to recover the whole algebra of time-dependent 
classical position and momentum as an average of the associated operators 
for Gaussian wave packets, i.e., coherent wave functions/6/ Ginibre and 
Velo (7~ have shown that this result can be extended to express classical 
dynamics as an asymptotic series in powers of h 1/2. A form quite useful in 
practice has been given by Hagedorn. (8'91 

In quantum logic, propositions are expressed in terms of some 
projectors, (1~ whereas classical logic, when applied to mechanics, refers 
to the state of the system as being in some specific cell in classical phase 
space, an idea going back to Poincar& The possibility of relating these two 
viewpoints is contained below in Theorem A, stating essentially that one 
can associate some "projectors" F with a cell C in phase space. Such an 
operator F shares many properties of a finite-rank projector as being self- 
adjoint, compact, having its eigenvalues in the interval [0, 1], and being 
such that the operator 6 F =  F 2 -  F is small (whereas 6F would exactly be 
zero if F were a true projector). These properties are true only when the 
cell C has a large volume in units h and a smooth enough boundary. The 
precise statement of the theorem is given in Section 2. 

One also needs to have some control over the commutator of two 
approximate projectors F 1 and F2, respectively, associated with two cells 
C1 and C2. This will be the subject of Theorem B. 

When an approximate projector F or rather F/(Tr F) is treated as a 
state operator (i.e., a state operator p), its quantum dynamical evolution is 
given by F ( t ) =  U(t)FU l(t), where U(t)=exp(- iHt /h) i s  the evolution 
operator with Hamiltonian H. On the other hand, when the cell C 
associated with F evolves under classical motion, it becomes after time t a 
new cell Ct to which one can sometimes associate its own approximate 
projector Ft. Theorem C will express that the operator 6F(t)= F ( t ) - F  t is 
also small under suitable conditions. 

Theorem C was conjectured without a proof in I. Analogs of 
Theorems A and B were stated in III together with a tentative proof using 
microlocal analysis. (12~ I must, however, acknowledge several serious 
defects of the results published in III: Microlocal analysis is often not 
familiar to physicists and I did not state precisely the mathematical results 
I was using. Furthermore, the "proof" used a correspondence between 
canonical transformations and unitary transformations in cases exceeding 
what has been rigorously proved. (13) Finally, I only showed that the 
"small" operators 6F were small in the sense of having a small trace, 
whereas a correct derivation of the logical consequences of Theorems A, B, 
and C needs a small trace norm, i.e., Tr I6F] [with 6F= (6FdF*) 1/2] must 
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be small. Accordingly, a precise statement and a correct proof of these 
three theorems is still needed and will be given here. 

It should be mentioned that Theorem A occurs as a lemma in the 
derivation of the asymptotic distribution of eigenvalues for a general elliptic 
operator as investigated by H6rmander. (14) It turns out, however, that 
H6rmander obtains bounds behaving like h 1/3 when h ~ 0, whereas general 
arguments (7) lead one to expect a behavior in h ~/2. This is certainly due to 
the fact that H6rmander was investigating a much more general problem 
and his lemma was probably the best one that could be obtained to solve 
this problem, but not the best one for our simpler purpose. This was a 
reason for trying to get a more direct proof of Theorem A, and it turned 
out that the proof of Theorem B was a simple consequence of it. 

A few words concerning the techniques to be used in the proofs are in 
order: Microlocal analysis is undoubtedly the mathematical theory best 
suited to this kind of problems. (2) There is, however, a simple practical sub- 
stitute for microlocal analysis that is often very useful, namely wavelet 
expansion. (15) A special case of wavelet expension consists in writing a 
function as a continuous superposition of Gaussian wave packets and, as 
such, it has already been much investigated by physicists after the work of 
Glauber. (6) 

So one may choose between a relatively simple and already familiar 
technique and a more powerful but much more involved general mathe- 
matical construction. Expansions in coherent states have been well 
investigated by physicists, with deep results ~6 9) that may be used readily. 
These were two reasons for choosing to cast the proofs within the language 
of coherent states. Unfortunately, I was unable to obtain all the needed 
results by this technique, because apparently wavelet theory is not well 
suited to an evaluation of trace norms. This is why some recourse to 
microlocal analysis remained necessary. I have tried to lessen this incon- 
venience by recalling in the Appendix all the mathematical results that are 
needed. Perhaps some readers will find them useful for their own problems 
and will be led to learn more about this deep and beautiful part of mathe- 
matics. 

The paper is organized as follows. Theorems A and B are stated and 
proved in Section 2. Theorem C is the subject of Section 3. In Section 4, 
these results are used to prove rigorously the limit of quantum represen- 
tations of logic toward classical logic in the conditions where approximate 
determinism holds. So the present work gives the proof of several key 
results put forward in I which had remained at the level of more or less 
intuitive arguments. The Appendix gives the needed essentials of microlocal 
analysis. 

These results will be used in a forthcoming paper to investigate why 
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ergodic systems cannot be reliably described by the Hamilton equations at 
the classical level, how this difficulty can be alleviated, and what irrevers- 
ible behavior of such systems occurs as a consequence of the theory. 

2. P R O J E C T O R S  IN HILBERT SPACE A N D  CELLS IN 
PHASE SPACE 

Let D and D' be two real, symmetric, n x n matrices, D being strictly 
positive definite, their matrix elements having dimension (length)-2x 
(action) under a physical change of scale. To the matrix Q = D  + iD' we 
shall associate the following Euclidean metric in phase space: 

d o ( x , p ) =  ( x t R e Q I x ) + - ~ ( p l R e Q - 1 l p )  (2.1) 

and the following family of normalized Gaussian wave packets: 

g(q,p)(X) = (2r0-~/4(det Re Q) 1/~ e x p [ _ ( 1 / 4 h ) ( x _ q l Q t x _ q  ) + ip .x /hi  

(2.2) 

It will sometimes be convenient to use two complex matrices A and B in 
place of Q and Q-~, with the following properties~8): 

(i) A-I  a n d B  i exist. 

(ii) BA-1 is symmetric. 

(iii) The matrix Re(BA-1) is strictly positive definite. 

(iv) (ReBA -1) I = A A * ,  from which it follows that 
(Re AB) 1)-1= BB*, together with the family of Gaussian wave 
packets 

g{q, p)(X) = (2=) - n/4h "/4(det A) -1/2 

x e x p [ - ( 1 / 4 h ) ( x - q I B A  l l x - q ) + i p . x / h ]  (2.3) 

One can identify the wave packets gqp and g'qp if Q = 1/2[BA -1 + (BA 1),]. 
Conversely, given Q, one can use the form (2.3) with, for instance, A = 
(ReQ)-I/2 and B = QA (nothing is changed if A and B are both multiplied 
on the right by a unitary matrix with determinant 1). 

One will need the scalar product of the two wave packets. It is given 
by 

( gq'p' I gpq ) = exp [ - (1/8h)(q - q' I D + D'D-1D'I q - q') 

+ i(p -- p ' ) .  (q + q')/2h - (1/2h)(p - p' ID-1D'I q - q') 

- ( 1 / 2 h ) ( p -  p' ID-ll p -  p')] (2.4) 
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The Euclidean n-dimensional scalar product is written as ( .)  and the 
Hilbert space scalar product as <. >. Furthermore, one has a decomposi- 
tion of the identity: 

I= fR2, ' [gqp){gqp dq dp (2nh)-"  (2.5) 

following from the relation <xl I l y ) = 6 ( x - y ) ,  which is easily obtained 
from an explicit integration. 

Let now C be a bounded, connected, and simply connected set C in 
a phase space ~z, with a boundary •C that is piecewise C 2. Given a 
positive number e (~ < 1), one will say that the set C is regular to order e 
if there exists a real, symmetric, n x n matrix Q and a positive number l 
such that: 

(i) On any C 2 part of c?C, the curvature radii of 0C, when computed 
with the metric d o, are all larger than l in absolute value. 

(ii) Let X=(x , p )  and let e(x,l) be the ellipsoid defined by 
gq(x- Ay)<. l 2. The margin of C is defined as the set 

M= U e(x,l) (2.6) 
x~C 

It contains ~?C. Let us denote by I-C] and [ M ]  the phase space volumes 
of the sets C and M, where, for instance, 

[C]  = j dx dp (2.7) 
c 

One then assume the condition 

[M] <e[C] (2.8) 

i.e., a relatively small volume of the margin. 

(iii) The numbers l and e satisfy the relation e - 2 #  < ~. (2.9) 

Clearly, when e < - l ,  these conditions imply that one deals with a 
macroscopic cell, i.e., [C]  >> (2~h)". 

As an example, in the case of a cubic cell having a side with length L 
in the x directions and P in the p directions the best estimates one will find 
will correspond to E = (h/LP) I/2 up to a multiplicative constant of order 
unity. 

Let now C be a cell that is regular to order e and Q a not necessarily 
real matrix for which C is regular. The operator 

F= ~ [gqp)<gqpl dq dp (2nh) -~ (2.10) 



362 Omn~s 

will be called an approximate projector associated with the set C. Its main 
properties are the following: 

1. F is a self-adjoint positive operator, as follows from the property 

(ul F]u) =- fc [(gpql U ) l  2 dq dp (2nh) n ~>0 (2.11) 

F = I - F  and using the decomposition of the identity 2. Putting 
(2.5), one gets 

F= f ]gpq)(gqpl dxdp (2nh) -n (2.12) 
e 

C is the complementary set of C. The quantity ff is also a positive operator, 
so that one has 

O<~F<<.I (2.13) 

giving the bound HFII ~< 1. 

3. The Hilbert-Schmidt norm of F is given by 

[]FllZs= fcdq d p (2nh) -n Icdq ' dp' (2nh) -~ I(gqpl gq'v ' ) l  2 (2.14) 

It is finite, as seen from Eq. (2.4), so that F is a compact operator. Its non- 
zero eigenvalues an are therefore discrete, satisfying 

0~<2,~<1 (2.15) 

4. The trace of F is given by 

f dq dp (2nh) " =  [C](2nh) " (2.16) Tr F =  
c 

i.e., essentially the number of elementary semiclassical states in the set C. 

5. Let us consider the operator 

(~F= FZ-- F= FF (2.17) 

One can easily estimate its trace norm, i.e., the quantity Tr 16FI, where Ic~FI 
is the absolute value operator (6F6F) 1/z. In fact, from 

6F= we ~ dq dp (2nh) ~ J ~c dq' dp' (2nh)-" Ig')(gt ( (g ' l  g)) (2.18) 
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one gets 

Trl6Fl<~fc!cdq'dp'(2~h) "dqdp(27ch) , , j (g,  jg>]2 (2.19) 

Under the regularity assumptions, one can estimate this double integral by 
integrating one variable over R 2n and the other one over the margin of C, 
so that 

Yr J,SF] < c[M](2rch) " (2.20) 

o r  

(Tr 16Ff/Tr F) < ce (2.21) 

c is a constant of order unity. 
Given a regular set C, one can in general associate with it many 

approximate projectors corresponding to a different choice for the matrix 
Q and the associated metric. One needs to prove the equivalence of two 
such approximate projectors F~ and F 2, meaning that the corresponding 
trace norm Tr JF~ - F21 is of order e. This property is harder to prove than 
the previous ones and the Oroof to be given will use microlocal analysis. 

Using Eq. (A.2) of the Appendix, one obtains the Weyl symbol f (x,  ~) 
of the operator F: 

f(x,  ~)= f dq dp (2~h)-n e x p { - ( x - q  lDf x-q)/Zh 
C 

- [ p - ~ - D D ' ( x - q ) ] D - X j p - - ~ - D D ' ( x - q ) ] / 2 h }  (2.22) 

It is seen that f (x,  ~) is practically equal to 1 or zero outside M, up to 
exponentially small corrections smaller than e t2. The function f(x,  ~) 
satisfies the conditions for being a symbol of arbitrarily negative order. 

Given two such symbols f l  and f2 corresponding to the same set C 
and two different matrices QI =D~ +iD'~ and Q2=D2+iD'2, the trace 
norm of the operator F 1 -  F2 can be estimated from the symbols, using 
Theorem A.4. The function fx - f 2  is significantly different from zero only 
in the union M~ w M  2 of the two corresponding margins. Neglecting 
corrections of higher order in h, one finds for Tr ]FI -- F21 the estimate 

JR2, dx d~ (27th) r, ]f~(x, ~) - f 2 ( x ,  4)1 (2.23) 

of order ( [M1]  + [M2])(2gh) ~. Assuming that both matrices Q~ and Q2 
allow the set C to be regular to order e, one gets 

Tr IF1 - F21/Tr FI < ce (2.24) 
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c is a constant of order unity. To summarize, one has obtained the 
following result. 

T h e o r e m  A. Let C be a set in phase space that is regular to order 
e for some matrix Q. One can then define an associated approximate 
projector, namely an operator F that is self-adjoint, compact with all its 
eigenvalues in [0, 1], having a trace as given by Eq. (2.16) and such that 
the operator 6 F =  F a - F has a trace norm of order e. Tr F. 

Furthermore, the difference F 1 - F :  of two such approximate projec- 
tors also has a trace norm of order e �9 Tr F. 

It is interesting to find the smallest value of ~ (as far as orders of 
magnitude are concerned) that one can assign to a given set C in phase 
space. For  definiteness, let it be assumed that one can introduce a reference 
length L and a reference momentum P such that L P  ~> 2~h, the curvature 
radii of ~C being all of order unity in the metric 

go(&,  dp ) -- L -2 dx 2 .-~ p-- 2 dp2 (2.25) 

and, furthermore, when C has the shape of a box, the distance of a face to 
a nonadjacent one being also of order unity. This is a very special case, but 
any other specific example can be treated along the same lines. It will also 
be assumed that ~C is C ~ except on the edges if they exist. This assump- 
tion is not necessary, although rather convenient. 

One will use microlocal analysis and only the case of no edge will be 
treated, the case of a box-shaped region being technically slightly more 
involved. 

Let f ( x ,  ~) be a smoothed characteristic function for the set C. This is 
a C ~ function identically equal to 1 or 0 except in a transition region con- 
taining c3C of small width zl (in the dimensionless metric go) to be called 
again the margin M of C. In M, f ( x ,  ~) passes continuously from the value 
1 well inside C to the value 0 well outside C. Its seminorms C~B are of 
order d-(Let + t~1)/2 except for numerical constants. 

k o m m a  1. The operator F having the Weyl symbol f ( x ,  ~) satisfies 
the following properties: 

a. It is a self-adjoint compact operator. 

b. Its eigenvalues satisfy the inequalities 

- ~ l < f , <  1 +~2 

where el and e2 are of order A-4(h/LP)2 .  

Ske t ch  o f  the ProoL Property a follows from Theorem A.1 and 
property b from Theorem A.3. 
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L e m r n a  2. Let ~F = F 2 - F. The trace norm of this operator  is bounded 
by the supremum of K[M](27rh) -n and K'[M](27rh) -~ A-4(h /LP)  2 as 
long as A > (h/LP) ~/2, K and K' being numerical constants of order unity. 

Sketch  of  the Proof. The function 6 ~ f = f 2 - f  is zero outside M. 
Inside f,  one has ]cS~f r < 1/4, so that, using Theorem A.4, the trace norm 
of the associated operator 61F satisfies 

Tr 16~f] < K[M](2rrh) ~ 

up to correction of higher order in h. 
Let d(x, 3) be the symbol of the operator F 2 - F .  According to 

Theorem A.2, one has 

d(x, ~) = f2(x,  3) - ( ~ 2 / 8 )  f { - } 2 f  = 6 ~ f +  a 2 f  

leaving out corrective terms of higher order in h. This is permissible as 
long as A > ( ~ / L P )  1/2. NOW 62f vanishes also outside M and is of 
order (h/Lp)21z~ -4 times a finite constant, so that, using once again 
Theorem A.4, one gets 

Wr 162F ] < K ' [ M ] A  4(h/Lp)2(2~h) n 

These results show that, using this alternative definition of a projector, 
one can go down to a value of e in the inequality 

Tr IF 2 - Fj < K[M](2zch)-"  = 

of the order of e = (h/LP) ~ with c~ > 1/2. 
With trivial changes and using smoothed characteristic functions to 

define a projector, one can also obtain the following result. 

Theorem B. Let C1, C2, and C1 c~ C2 be three sets in phase space, 
all having C ~ boundaries with curvature radii of order unity in the metric 
go except on a finite number  of edges, and let F~, F 2, and FI2 be 
approximate projectors for each of them that are obtained from a 
smoothed characteristic function. Then the operator  

6F = F, F 2 --  F12 

is bounded in trace norm by 

Tr 10El < K[C](2rch) n(h/LP)~ (2.26) 

where [ C ]  = sup([C~],  [C2]),  e >  1/2, and K a constant of order unity. 
This theorem immediately gives a bound for the commuta tor  [F~, F2]. 
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3. D Y N A M I C A L  E V O L U T I O N  OF P R O J E C T O R S  

In the present section, we shall use approximate projectors coming 
from a superposition of coherent state projectors. The results are also 
probably true for projectors generated by smoothed characteristic func- 
tions, but no complete proof is available. Such a proof would amount to 
an extension of Egorov's theorem (~3~ to a larger class of canonical trans- 
formations, although with a much more restricted class of operators. A 
proof using microlocal analysis would also presumably allow one to con- 
sider the case of rather general Hamilton functions and configuration space 
not reduced to R n. However, the method to be used here will be restricted 
to Hamiltonian operators of the form 

H =  ~ pZ/2m+ V(x~ ..... x,,) (3.1) 
j = l  

It would of course be easy to introduce different mass coefficients for the 
different degrees of freedom, but the form (3.1) is enough to illustrate the 
main physical aspects of the problem. 

The potential V is assumed to satisfy the following conditions: 

(i) VeC2(R"), ]V(x)l<~Kle Mx2, V ( x ) > / - - K  2 (KI>0, K2/>0, 
M>O). 

(ii) Let v(Z)(x) = (Q/Oxy 8/Sxk) V(x) be the Hessian matrix of V and 
IIv(Z)(x)H its operator norm as a matrix (i.e., the absolute value of its 
largest eigenvalue). V(2)(x) is uniformly Lipschitz on compact subsets of 
En, i.e., given any A>O, there exists fl such that HV(2)(x) - v(Z)(y)b I ~< 
f i l x - y [  for [x[<A and [y l<A.  

Coherent states will be expressed in the form (2.9). Such a wave packet 
depends upon several parameters: an average position q, an average 
momentum p, and two dispersion matrices A and B satisfying the condi- 
tions given in Section 2. 

Let gqp(O) be such a wave packet. It is convenient to introduce classi- 
cally transported wave packets gqp(t), still Gaussian, with their parameters 
(q, p, A, B) depending upon time and satisfying the following differential 
equations: 

dpjdt  = - (  3 V/Oxj)( q( t ) ) (3.2a) 

dqjdt  = pj( t )/m (3.2b) 

dA/dt = iB( t )/m (3.3 a ) 

dB/dt = 2iv(2)(q(t)) A(t) (3.3b) 
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Equations (3.2a) and (3.2b) are the classical equations of motion for 
a trajectory (q(t), p(t)). In Eq. (3.3b), the right-hand side is a matrix 
product. Equations (3.3a) and (3.3b) define a classical transport for the 
uncertainties in position and momentum, starting from initial matrices 
A0, B 0 at time zero. In fact, the correlation matrices for position and 
momentum are given, respectively, by 

( ( x j -  ( x j ) ) ( x k -  ( x~) )=  (h/2)(AA* + A*A)jk (3.4a) 

( ( P j -  (Pj})(Pk - ~Pk}) = (h/8)(BB* + B*B)jk (3.4b) 

Given an initial point (qo, Po) in phase space at time zero, the corre- 
sponding classical action S(t) is defined by 

S(t) = [p(t')Z/2m- V(q(t'))] dt' (3.5) 

In the expression (2.3) of the wave packet gqp~o there enters a nor- 
malization factor [det A(t)] -1/2, where the square root never vanishes and 
is defined by continuity (this takes care of the Maslov index~16~). With these 
conditions and conventions, one has the following result. 

T h e o r e m  (Hagedorn~8~). For each time T > 0  and each positive 
2 < l/2, there exist positive constants K and 6 such that, whenever Itl < T 
and h < 6, one has 

lie--iHt/hgqp(O)- eiS(')/~ gqp(t)l[ <~ Kh ~ (3.6) 

In fact, one has exactly K = 0  when V is a polynomial of degree 2 
(constant force + harmonic oscillator). A rough estimate of the right-hand 
side in inequality (3.6) is given by 

h 1/2 fO I V(3)(t)l a3(t) dt (3.7) 

where V(31(/) represents the largest component of the tensor OiOjgk V(x) at 
the classical position q(t) and a2(t) is the largest eigenvalue of the matrix 
D-l(t)  related to A(t) as explained in Section 2. 

Let Co be an initial set in phase space at time zero, regular for the 
matrix Qo to order e. Let C, be the image of Co under classical motion at 
time t. It will be assumed that Ct is also regular to order e for all the 
matrices Q(t) related to Qo for any point (q0, po) belonging to the interior 
of Ct as long as 0 < t <  T (T>0) .  Furthermore, assume that Kh~<e 
uniformly in Co in Eq. (3.6). Given Co and Qo, the regularity of Ct can in 
principle be checked by a calculation using classical dynamics and I shall 
not try to give an analytic criterion. Thebound  upon Kh ~ is more difficult 
to assert, but if the estimate (3.7) is used, it again boils down to a condition 

822/57/1-2-24 
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involving only classical dynamics. When these conditions are satisfied, it 
will be said that dynamics is regular to order e for the cell Co during the 
time interval (0, T). 

Then Hagedorn's theorem yields a simple corollary that is most useful 
for the interpretation of quantum mechanics: 

Theorem C. Let Co be a cell regular to order e and let dynamics be 
regular to order e for Co during the time interval (0, T). Let F0 (resp. Ft) 
be an approximate projector associated with the cell Co (resp. C,) using 
Eq. (2.10). Let F( t )=  U(t)FoU-1(t)  and 

6r(t) = F(t) - F, (3.8) 

Then one has 
Tr 16F(t)l < Ke(Tr Fo) (3.9) 

K is a constant of order unity. 

Proof. Let F[ be the projector associated with C, by Eq. (2.10) using 
the wave packets gqp(,). Despite the dependence of the matrices Aft), B(t) 
over the initial point (qo, P0), Eq. (2.10) still defines a projector. This is 
most easily seen as follows: Define an operator F[ by Eq. (2.10), where the 
dispersion matrices (A, B) depend upon (p, q). One can compute the Weyl 
symbol f[(x ,  4) of this operator, using Eq. (A.2). The integration over the 
variable y in Eq. (A.2) can be evaluated explicitly to show that f[(x ,  p) is 
equal to 1 within C,, and to zero outside, except in a small transition 
region that is a margin. Then, using Theorem A.3, this evaluation can be 
used to show that F[ is an approximate projector. 

If the projector F, uses other wave packets with a fixed dispersion, 
inequality (2.24) gives 

Tr I F / -  Ft[ < ce Tr F, (3.10) 

Furthermore, Eq. (2.16) together with the equality [Co] = [Ct] resulting 
from Liouville's theorem gives Tr F, = Tr Fo. Therefore, one can consider 
only the operator 8'F(t)= F ( t ) -  F[. 

Writing 
-is,/(h),~, = (3.11) e v,5~qp, t e - i H t / h g p q ( O  ) - - e - i S ( t ) / h g p q ( t  ) 

one gets 

Eft) - F / =  f dqo dpo (2~h) - - "  [gpq(t) "}- ~)gpqit ) ~ gpq(t) + 6gpq, t[ 
Co 

- fc, dq dp(t)(2~h) -~ [gpq(t)) ( gpq(t)l (3.12) 
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A change of variables (q0, Po) ~ (q(t), p(t)) with Jacobian unity then gives, 
after suppressing the unnecessary time index, 

F(t) - F; = Ic dq dp (2~rh) -n(lgpu + 6gpq ) ( gpq + 6gpql + I gpq ) (gpul) 
t 

(3.13) 

The term [F( t ) -F~ ' ] /1 /  linear in 6gpo is bounded in trace norm by 

IF(t) - F f ]~  1] ~< f 2 dq dp (2rch) -"1 (gpq!l 116gpq )) 
Ct 

2 dq dp(2rch)-" Ilgpq[] " 113gpq[] 
Ct 

~< 2e[Ct](2~zh) -" = 2e Yr F, = 2e Tr Fo 

The term quadratic in ~)qpq is bounded by 

(3.14) 

IIF(t) - F; H ~2] < f dq dp (2rth)-~ H6gpqH 2 

~<e2 Tr Fo (3.i5) 

Inequalities (3.10), (3.14), and (3.15) give (3.9). 
Theorem C may be considered as stating sufficient conditions for iden- 

tifying quantum dynamics and logic to classical dynamics and logic up to 
a reiative error in probability of order 5. The smallest value of e one may 
get in a given situation is controlled by data computable by classical 
dynamics, except for the right-hand side of inequality (3.6), which may, 
however, be estimated by the quantity (3.7). 

Although Theorem C only gives sufficient conditions, it may be expected 
that the connection with classical physics will be lost when the uncertainties 
become uniformly large and/or when the boundary c~C, becomes so irregular 
that there is no possible way to associate an approximate projector with C,. 
It may be shown that the canonical transformation (q0, Po) ~ (q(t), PU)) has 
finite first derivatives, i.e., the differentials ~q(t)/Oqo, Oq(t)/@o, @(t)/Oqo, and 
@(t)/@o exist. Accordingly, the time evolution for the uncertainties (3.3) can 
be solved (81 to give 

A(t) = [~?Q(t)/Oqo] Ao + (i/2)[#q(t)/@o] Bo 

B(t) = --2i[@(t)/Oqo] Ao + [@(t)/@o] Bo 
(3.16) 

There is one case where it can be expected that the connection with 
classical physics is completely lost, namely when the derivatives of 
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(qo, Po) ~ (q(t), p(t)) increase exponentially with time, since both the 
uncertainties and the boundary become uncontrollable after a finite time. 
This is a very interesting point, since it shows that the reliability of classical 
physics, except during a finite time, is quite questionable when one is 
dealing with some ergodic or Lyapunov unstable systems. It means that for 
such a system, the classical Hamilton equations lead to classical histories 
which have no meaning in any underlying quantum logic. In other words, 
the link between quantum mechanics and classical mechanics is not univer- 
sal. This question will be further investigated in a forthcoming paper. 

On the other hand, if one considers a regular macroscopic system, 
using only a few collective coordinates to describe it as happens for the 
apparatus that engineers and physicists build or other reasonably stable 
macroscopic systems, one may expect that quantum dynamics and quan- 
tum logic are well approximated by classical dynamics and classical logic 
with errors in probability of the order of h ~/2 or so. 

These are the systems for which the theory proposed in I are valid 
and they include what one usually means by a measuring apparatus or a 
reliable record (as, for instance, the fossil track of an e-particle in a rock). 

4. C O N S E Q U E N C E S  

The present results control in practice the approximation of quantum 
logic by classical logic. 

Consider the following example. A physical system S has only con- 
tinuous degrees of freedom or one is considering a model for S involving 
only some continuous collective coordinates. Let Co, C1, and C 2 be three 
cells in phase space satisfying the following asumptions: The dynamics is 
supposed to be regular for Co and C1 up to order e during time interval T. 
Classical motion transforms the initial cell C o at time zero into a cell Co(t1) 
at time tl and assume C~ c Co(t~). Similarly, classical motion transforms 
C~ at time t~ into the cell C2 at time t 2 (0 < tl < t2 < T). Assuming in the 
logic of classical dynamics that the system is initially in a state described 
by the cell Co, one would say that it can be in C~ at time tl and, tf  so, then 
it must be in C2 at time t2, i.e., [-C2, t2] =~ [C~, t l ]  , these propositions 
belonging to classical logic and the implication following from the inter- 
pretation of classical logic by set theory in the universe of discourse of 
classical dynamics. 

Assuming, however, that classical dynamics and classical logic are of 
no fundamental avail, but should rather be considered as approximations 
to quantum dynamics and quantum logic, one is led to reconsider the 
above statements in a new light: Let Fo, F~, F2 be, respectively, 
approximate projectors of order e associated with the cells C o, C 1, C 2. Let 
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the initial state operator be given by p--F0/(Tr Fo). Let [C~, t~] denote 
the quantum proposition asserting that the system is in the cell C1 at time 
t I . To be precise, it should be recalled that a quantum logical predicate has 
in general the form [S, A, B], asserting that some observable A describing 
the system S is in some part B of the spectrum o- A. Here the quantum 
predicate [C~] is interpreted as [F1, [ 1 -  ~, 1 ]] ,  meaning that the observ- 
able F~ has its value in the part of its spectrum belonging to the interval 
[1-  e, 1 ]. Clearly, this kind of classically meaningful predicate involves 
some fuzziness, since there is some arbitrariness in the choice of the 
approximate projector F~ and of the interval [ 1 - e, 1 ], but this is precisely 
the kind of imprecision one may expect in the relation between classical 
physics and quantum physics. It should be noticed that the strict projector 
E~ associated with the predicate [F  1, [ 1 --e, 1 ] ] differs from F~ itself by an 
operator having a trace norm smaller than e. Therefore, for calculations to 
be made with error e, one can as well use F~ for the projector associated 
with the predicate [Cl] .  Furthermore, with the time-indexed predicate 
[CI, t l] ,  one will associate the projector Fs U-l(t~)F1 U(t~). Similar 
conventions will be used for [C2, t2] .  The projector representing the 

C* negation [ i ], C* being the set complementary to C~ in phase space, is 
similarly associated with the projector F* = I - F ~ .  

There is only one logical consistency condition (173 for the smallest 
Griffiths family of history predicates containing both predicates [C1, t 1] 
and [C2, t2], that is, 

Tr{ [ F l ( t l )  , [p,F*(tl) ] F2(it2) } -- 0 (4.1) 

It is useful to define a reference scale for the probabilities or the traces, 
which will be conveniently defined as 

Wo = Tr [F,(t l  ) pF~(tl ) Fz(t2)] 

= Tr[F1U(t~) Fo u - l ( t l )  F~ U-~(t2 - tl) F 2 U(/' 2 - -  t l )] /Tr F o (4.2) 

According to Theorem C, U(tl)Fo U-1(tl) is, up to errors of order e in the 
norm, an approximate projector associated with Co(t1). Its product by F1 
both on the right and the left is, with the same error, simply an 
approximate projector associated with C1 according to Theorem B. One 
can neglect these terms having a trace norm of order e in Eq. (4.2) because 
all the factors are projectors having an operator norm unity, so that the 
inequality 

]Tr(AB)I ~<Tr IAJ-[IBli 
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shows that one is only making an error e in w0. This being seen, one finds 
that with an error of order e, one has 

Wo = Tr[ U(t2 - t l ) F  1 U- l ( t2  - t l )F2] /Tr  Fo 

Using Theorem C, one gets immediately 

w o = (Tr F1)/(Tr Fo) + O(e) (4.3) 

The trace occurring in the consistency condition (4.1) can be evaluated 
along the same lines to give 

Tr{ [Fl ( t l  )[p, r * ( t l ) ]  ] F2(t2) } = O(e) (4.4) 

It may be useful to insert here a remark without giving a proof, which 
would need quite different considerations: the right-hand side of Eq. (4.4) 
is extremely sensitive to the exact choice one makes for the boundaries of 
the cells or the approximate projectors. In practice, it may take positive or 
negative values with an absolute value of order e (examples are given in II). 
Any kind of averaging then replaces the term O(e) in Eq. (4.4) by O(e2). In 
any case the consistency conditions are satisfied at least to order e (in 
practice to order e 2) and one can use the rules of Boolean logic with errors 
in probability of order e. 

The probability of the predicate [C2, t2] is given by 

w' = Tr[pF2( t2)] /Tr  F o (4.5) 

and an analysis similar to the preceding one gives 

w '=  (Tr F2)/(Tr Fo) + O(e) = (Tr F~)/(Tr Fo) + O(e) = Wo + O(e) (4.6) 

Similarly, one gets 

w" = Tr[pFl ( t~ ) ] / (Tr  Fo) = Wo + O(~) (4.7) 

The near equality these three probabilities Wo, w'l, and w" together with the 
consistency conditions immediately yields the following two quantum 
logical implications that are valid up to errors of order e: 

[C~, t t]  ~ [C2, t2] (4.8a) 

[-C2, t2] ~ [C, ,  tx] (4.8b) 

Therefore one has found complete agreement (up to order e) between 
the predictions of classical logic and those of quantum logic, as announced 
in less precise terms in I. The general pattern of such proofs should be clear 
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enough to show that such an agreement always occurs when the conditions 
of applicability for Theorems A and C are satisfied, i.e., when the cells are 
regular enough and the dynamics is regular. 

A P P E N D I X .  P S E U D O - D I F F E R E N T I A L  O P E R A T O R S  

There is not yet an account of microlocal analysis directed toward 
physicists. This is why I give here a summary of the results used in the 
present paper. They have been translated from more general theorems to 
be found in H6rmander's book. (~2) Their proofs are most often extremely 
involved and they will not be given here except for a few hints to show how 
the results arise. I hope that this brief account will be found useful by some 
physicists for other problems. 

A.1. Opera tors  and Associa ted  Funct ions 

Let a physical system be described by the coordinates x = (x 1,..., xn) in 
the configuration space En. The momentum coordinates will be denoted for 
convenience by the corresponding Greek letter ~ = (~i,.--,~n). The Hilbert 
space of quantum mechanics for this system is aft = L2(~n). 

Let f2 be some operator in YF; its kernel f2(x, y) is by definition the 
function or distribution 

Q(x, y)= <x I~t Y) (A.1) 

which may or may not exist. 
A function co(x, 4) defined on the phase space ~2n will be associated 

with the operator ~2; it is defined by the partial Fourier transform 

co(x, ~) = f ~(x + y/2, x -  y/2) exp(--i~ .y/h) dy (A.2) 

where ~ . x = ~  1 .Xl + . - - + ~ - x n .  The conditions on the function co(x, ~) 
and the operator ,Q allowing such a correspondence will be given latter. 
The same letter, either capital or in lower case, will be used systematically 
to denote an operator and the associated function. 

Equation (A.2) shows that the adjoint operator s + corresponds to the 
complex conjugate function co*(x, ~), so that a real function corresponds to 
a self-adjoint operator. Let Xj and Pj denote the position and momentum 
component operators; the corresponding functions are, respectively, x: and 
~j. To the identity operator corresponds the function 1 identically equal to 



374 Omn(~s 

unity, and the function identical to zero corresponds to the zero operator. 
To a particle Hamiltonian operator 

H = ~ (P~/2mj) + V(X) (A.3) 
J 

corresponds the Hamilton function 

h(x, 4) = Z (~/2mj) + V(x) (a.4) 
J 

The action of an operator Q on a wave function u(x) is given as a result 
of Eqs. (A.1) and (A.2) by 

((2u)(x) = f ~( (x  + y)/2, ~) exp[i~. (x - y)/h] u(y) dy d~/(2~h) n (A.5) 

When the trace of (2 exists, the same equations give 

= f ~(x,  ~) dx d~/(2Tch) ~ (A.6) Tr (2 

These conventions constitute the basis of the Weyl calculus ~s~ that is 
a version of the theory of pseudo-differential operators/TM They are well 
known in statistical physics under another guise, where (2 stands for a 
density operator and ~o(x,~) for the associated Wigner distribution 
function.~ 19) 

A.2. Symbols 

One is interested in semiclassical physics, i.e., in wave functions or 
operators varying slowly on the quantum scale h. Rather than wave 
functions, it will be convenient to deal with density operators or projectors. 
The slow variation of a density operator p is most easily defined as a 
property of its associated function p(x, 4): if L is a typical length and P a 
typical momentum for the variation of p(x, 4), then one assumes that 

L P ~ h  

It will be convenient to fix these scales (L, P) once and for all for a given 
problem and the following two functions will be used to characterize a slow 
variation: 

#(x, ~) = (1 + x2/L 2 + ~2/p2)t/2 
(A.7) 

k(x, 4)= (h/LP)(1 + x2/L 2 + ~2/p2) 1 
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Given any real number m, a function co(x, ~) will be called a symbol 
of order m if it is indefinitely differential (aC ~ function) and is bounded as 
well as its derivatives in the following form: 

I~xO~co(x, ~)1 ~< C : , L -  I '~(x,  4) m (A.8) 

The notation is the following: ~, for instance, is a multi-index 
= (~1 ..... %), c 9 ~> 0 whatever j. The notation ~?; represents the differential 

operator (~/Oxl) ~. . .  (~/Oxn) ~. The quantities C:~ are constants, which are 
called the seminorms of co(x, ~), and their values give a precise meaning to 
what is meant by the slow variation of co(x, 4). Most often the constants 
L and P will be chosen so that the seminorms will be of the order of unity. 
The class of all symbols of order rn is denoted by Sm. The operators that 
can be associated with symbols are called pseudo-differential operators. 

For  instance, the components of the position operator X and the 
momentum operator P are pseudo-differential operators. Their symbols 
belong to S 1. The kinetic energy in Eq. (A.4) belongs to S 2. The Hamilton 
function is a symbol only if the potential is itself a symbol. This is a rather 
strong assumption, since it implies in particular that it is a C ~ function. 
It excludes the case of the Coulomb potential, which is not-everywhere 
differentiable. However, this important special case can be handled by more 
refined techniques. (20~ 

One sometimes needs another kind of symbol: Semiclassical physics is 
generally expressed by expansions in powers of h and in the present case 
by expansions in powers of the dimensionless parameter (h/LP). It will be 
convenient to use a shorthand notation for the functions or operators 
occurring in such a series. A C ~ function co(x, ~) will be said to belong to 
the class of symbols Sm(k N) if it satisfies the bounds 

[co(x, 4)] ~< C'~L I~lP-I~lkN(x, ~)#(x, ~)m-I~l-I~l (A.9) 

When the constants C~'~ are of order unity, the small factor (h/LP) occurring 
in the function k(x, ~) tells us how small the function co(x, 4) is. Knowing 
in such a case that a function belongs to the class S~(k N) therefore tells us 
that it is at most of order (h/LP) N, that it varies typically over distances 
of order (L, P), and how it behaves when Ix[ and 14l tend to infinity. 

The fact that a symbol co(x, 4) belongs to a given class S m often gives 
very useful information concerning the properties of the associated 
operator: 

T h e o r e m  A.1. Let co(x, 4) belong to Sm. Then, if m ~ 0 ,  the 
associated operator f2 is bounded. If m < 0, f2 is compact. 

As is well known, a compact operator has only discrete and bounded 
nonzero eigenvalues. 
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A.3. Products of Operators  

Some properties of the correspondence between symbols and 
operators are obvious: sums as well as products by pure numbers do 
correspond. The product of two operators is much more difficult to handle. 
Consider two operators A~ and A2 with respective symbols al(x, ~) and 
az(x , ~) belonging to the classes S m~ and S ~. The problem is to find what 
symbol b(x, ~) corresponds to the operator product product B = A~A2. 

It will be convenient to introduce the Fourier transform of a wave 
function u(x) through 

fi(~) = f exp( - i~  .x/h) u(x) dx 

u(x) = f exp(i~, x/h) fi(~) d~/(2nh)" 

(A.IO) 

as well as the complete Fourier transform of a symbol with respect to both 
arguments 

~(~, y) = f a(x, ~) exp[i(~ .y - tl. x)/h] dx d~(2~h) 

a(x, ~) = f fi(q, y) exp[ - i ( ~  . y - 7" x)/h] dy d~l (27~h) n 

(A.11) 

A straightforward computation using Eq. (A.5) gives 

(,  

b(x, ~) = j al(x + z, ~ + ~) az(X + t, ~ + ~) 

• exp[2ia(t, ~; z, ()/h] dz d( dt dz/(nh) 2" (A.12) 

where a denotes the antisymmetric bilinear form (symplectic form) 

a(t, z;z, ~ ) = ~ . z - ~ . t  (A.13) 

Equation (A.12) can be written in terms of the Fourier transforms of the 
symbols a 1 and az as 

f.  ( .  

b(x, r = J e ~(" .x r dy d~ (2~h)-~ J fil(~-, z) 62(~, t) 5(~ + ~ - r/) 

x 5(z + t - y )e  i(r ~ .~)/2~ dz d~ dt dz (2nh)-" (A.14) 

Expanding the last exponential as a series and identifying, for instance, a 
multiplication of ~1(~, z) by ~ or z as a derivation acting upon al(x, ~), it 
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is possible to write Eq. (A.14) in a much more transparent form. A few 
notational conventions are necessary to do so. 

The Poisson bracket of two functions f and g is defined by 

{f,, g} = c ~ f  . O x g - ~ x f  .a~g 

One can more generally define a Poisson bracket differential operator �9 } 
by 

{.}-- 

the direction of the arrow indicating wether the corresponding differentia- 
tion acts upon a function on the right or on the left. For  instance, one has 

f { ' } g = { f g }  

f { . } 2 g = ~ [ (a2f/ar #~k)(a2g/axj Oxk) + ( a2f/axj Qxk)(a2g/e~j a~k) 
jk 

- 2((?:f/Oxj r162162 i axk)] 

and so on. An exponential of the Poisson bracket operator can then be 
defined as 

exp (2{ .} )=  ~ ( l / r ! )2"{-}"  
r = O  

Using this notation, one can then write the symbol of an operator product 
as given by Eq. (A.14) in the form 

b = al e x p ( - i h { .  }/2)a2 (A.15) 

When al or a2 is a polynomial, then sum (A.15) is finite and gives the 
correct answer. In the general case, Eq. (A.15) represents an asymptotic 
series, so that it is convenient to write explicitly a finite number of terms 
in the expansion of the exponential and to exhibit explicitly a remainder, 
i.e., 

b = a , a 2 - i ( h / 2 ) { a l , a 2 }  + ...  + (--ih/2)N al{ . }u a2 / (N-1 ) ! - I -pu  (A.16) 

This is in fact a semiclassical expansion of b(x, ~) in powers of h. Its 
precise formulation is given by the following. 

Theorem A.2. Let a l ( x  , ~) and a2(x , ~) be, respectively, two sym- 
bols of order rnl and m 2 and let A1 and A 2 be the associated operators. 
Then, the function b(x, ~) associated with the operator product B = A 1 A 2  
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is a symbol of order ml + m2. The remainder DN is a symbol belonging to 
the class 

Sin1 + m2(ku ) 

In order words, one has the following bound for the remainder 

IpN(X, 4)1 ~< K(h/LPM)N( 1 + x2/L2 + ~2/pZ)-N+ (ml + m2~/2 (A.17) 

with similar bounds for its derivatives. The constant K is expressed more 
precisely by the following rule. 

Good-behavior rulo. Using microscopic scales of length and 
momentum (o and /~o such that fo / /%=L/P and (o / ;0=h,  then the 
constant K occurring in the bound (A.17) is given by 

K=(c/N!)  sup L~0r~l~l~l~klc?~c3~r(~x, c3~'~3y,~)al(x,~)az(Y, n ) 7 o o  
x,~,y,n, cq~ 

(1.18) 

where c is a numerical constant of order unity depending only upon n and 
N. The supremum is taken over all the indices e,/~ such that 
0~< Ic~[ + 1/31 ~<n+ 1. 

As a consequence, terms of a given derivative order [el + [/~[ have also 
a semiclassical order of magnitude (h/LP) t~l+l~l, so that generally the 
leading term is obtained for e =/3 = 0, i.e., 

K~(1 /N! )  sup lal{.}Na2l (A.19) 
x ,  

This simple evaluation does not hold when the number of degrees of 
freedom n becomes very large and when the seminorms of al and a2 
increase rapidly with 7 and/3. 

A.3. Norms  and Traces 

One often needs to put some bounds upon an operator that is given 
by its symbol. Consider, for instance, a real symbol a(x, 4) that is known 
to satisfy the inequalities 

Cl <~ a(x, 4) <~ c2 (1.20) 

If one thinks of a(x, 4) as some classical version of the associated 
observable A, one is tempted to assume the approximate validity of the 
inequalities 

C11 ~ A ~ C2I? (A.21) 
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This would give immediately an estimate for the norm of A, namely the 
supremum of [clr and c2. 

This assumption turns out to be true up to corrections of order 
(h/LP) 2. It may be useful to sketch why this happens before stating the 
precise correct results. Subtracting cl or c2 from a(x, ~), it is obviously 
enough to ask which bound for the operator A results from the inequality 

a(x, ~) >i 0 (A.223 

If the positive square root b(x, ~)=  [a(x, ~)]1/2 is a symbol, one can 
associate an operator B with it. Theorem 2 can then be used to show that 
the square of the operator B has a symbol 

b2(x, ~ ) -  (h2/8)b{. }2b + ... 

where one has used Eq. (A.15). The first term is a(x, ~) and the associated 
operator is A. The next term is of order h 2 because the first term {b, b} is 
identically zero. This suggests a relation A = B 2 + A', i.e., A >~ A', where A' 
is an operator proportional to h 2. 

The example a ( x , ~ ) = x  2 shows, however, that i n _ t h a t  case 
b(x, ~)=  Ixl is not differentiable, so that due caution must be exercised. 
The result of a careful and difficult analysis is the so-called "sharp G/irding 
inequality," which will be given here in a special but useful case. 

T h e o r e m  A.3. Let a(x, d) be a positive symbol belonging to 
SO(k 2). Then one has the inequality 

(u] A ]u)~> - C  (A.23) 

for any normal wave function u belonging to the Schwartz set 5 ~ of rapidly 
decreasing C ~ functions. 

The constant C only depends upon n and is essentially one of the 
seminorms C~/3 of a as an element of S~ -2) as given by the bounds (A.9), 
i.e., 

/3 + IO ~c~ ~a(x, ~)1 <<. C;/3(LP/h)2[1 + (X2/L2) + (~2/p2) 32 (l~r !/31)/'2 

Generally, one is interested in a symbol a(x, ~) satisfying the bounds (A.8) 
with constants C~/3 of order unity, so that the constants C'/3 can be taken 
of order (h/LP) 2. If, furthermore, a(x, ~) is a symbol of order zero, so that 
A is bounded according to Theorem 1, the inequality (A.234) is valid for 
any normed wave function u with no differentiability condition upon it. 
Then it follows that (ul A ju) is larger than a negative constant of order 
(h/LP) 2. This result is extremely useful to bound a spectrum or a norm. 
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It should be noticed that a positive symbol does not strictly 
correspond to a positive operator. The reciprocal property is well known 
in physics, since a positive density operator does not strictly correspond to 
a positive Wigner distribution function. 

Along with the ordinary norm in Hilbert space, two other kinds of 
norms are useful, namely the Hilbert-Schmidt norm 

2 _ _  IIOI1Hs - rr(f2 +f2) (A.24) 

and the trace norm 

IIg211 tr = Tr [sg] = Tr(f2 +Q)t/2 (A.25) 

When ]]~l[tr<oe, the operator f2 is said to be of trace class and its 
ordinary trace is then well defined independently of the basis in Hilbert 
space. 

The Hilbert-Schmidt norm is easily expressed in terms of the corre- 
sponding symbol by 

2 2 I1 [ tHs=f [(x[f2[x)l  d x = f  [co(x, ~)[Zdxd4/(Nrch)" (A.26) 

The trace norm plays a central role in applications to quantum mechanics 
or statistical mechanics. This is because quantum averages are given by 
traces and one will often be led to bound such a trace using the inequality 

[Tr(AB)[ ~< HAll .Tr ]B[ (A.27) 

It is therefore important to get an estimate of Tr ll21 from the knowledge 
of a symbol co(x, 4). Here again, this is a difficult problem with a nontrivial 
answer and it will be useful to first give a hint about its solution in order 
to make clearer the answer. 

Consider the case of a positive real symbol a(x, 4) vanishing outside 
a bounded region D. One can still use formally Theorem A.2 to write 
A -= B2+ A', where B is the operator with symbol a(x, 4) 1/2, assuming that 
this square root is indeed a symbol, and a'(x, 3) is a function of order 
(h/LP) 2. Then one can write 

TrlAl ~<Tr B2+ Tr lA'j (A.28) 

Let c(x, 4) be the symbol of the operator B 2. According to Eq. (A.6), one 
has 

= f c(x, 3) dx d~/(2~h)" (A.29) Tr B 2 

and, according to Theorem 2, 

c(x, ~) --- b(x, ~) exp( - ih{ .  }/2) b(x, 4) (a.30) 
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When Eq. (A.30) is inserted into Eq. (A.29), integration by parts shows 
that all the terms in the expansion of the exponential give a zero contribu- 
tion to the integral in Eq, (A.29) except for the leading term, so that one 
simply gets 

= f b2(x, 4) dx d~/(2~h) n = f a(x, 4) dx d4/(2~zh) ~ Tr B 2 

and one expects Tr A' to be of order (h/LP) 2. 
When a(x, 4) is not positive, one can try to decompose it into a dif- 

ference a+(x, ~ ) - a  (x, ~), where, for instance, a+(x, 4)>>.0, a (x, ~)>>.0. 
This would suggest that 

I A l = f ( l a + ( x ,  4 ) l + i a  (x, 4)1) Tr dx dr ( 2zh ) ~ Ilallcl(R~zh) P/ 

up to corrections of order (h/LP) 2. The same property is also expected 
when a(x, 4) is a complex quantity. Here RaNt, is the ordinary Lebesgue 
integral of the absolute value of a(x, 4). To estimate the corrections and to 
get the best choice for a+ and a is a highly nontrivial task. The most con- 
venient form of the result for the applications is probably the following 
one . (14)  

Consider the scales E 0 and/~o such that (o/L =/zo/P and r = h and 
let B denote the "unit" ball 

X 2 f  o 2 -~- ~ 2 ~ O 2  ~ l 

Given a function a(x, 4), one will denote by 6a(x, 4) the function 

6a(x, 4)= sup r(Io<Ox/% ~r t, ~+r ) l  (A.31) 
(t,~) c B;Ic~] + [fll = n +  l 

which is typically of order (h/LP) ~ + 1. Then one gets the following result. 

T h e o r e m  A.4. One has the estimate 

I[A [I t r  ~ C1 [Jail cl(2rth)-n + C2 Ilaall cl(2zh) n (A.32) 

C1 and C2 are constants of order unity. 
This last result concludes the list of basic theorems necessary for the 

applications in the present paper. As a final remark, I shall indicate how 
they can be used to localize the action of an operator in different regions 
of classical phase space (hence the name microlocal analysis). One can 
cover phase space by some cells C r and introduce a corresponding partition 
of unity, that is, a family of C ~ functions {opt(x, 4)} such that the support 
of r  4) is essentially C r and 

(y(x, 4 )=  1 
r 
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whatever (x, r Given a symbol a(x,  ~), one can write it as a sum 

a(x,  r  ~ ar(X, ~) 
r 

where each symbol at (x ,  ~ ) = a ( x ,  r r is localized (nonzero)  in a 
ne ighborhood  of C '. Theorem A.2 allows one to replace this elementary 
parti t ioning by a proper ty  of operators.  This powerful localization techni- 
que allows the considerat ion of a general kind of configurat ion space and 
not  only R n, i.e., a general kind of phase space and not  only R2n. 
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